。

白
Mathematics syllabus for Grade 11 and 12
For Bilingual Schools in the Sultanate of Oman

Commencing Dates：2009／2010 for grade 11
\＆
2010／2011 for grade 12

Prepared By：A Stevens（Qurum Private School）
M Katira（Qurum Private School）
M Hawthorn（AI Sahwa Schools）

In Conjunction with Ministry of education：Ahmed AI－Thuhli－Curriculum Officer Moosa Hadi－Math Supervisor

Based on：
1．Textbooks：Advanced Maths AS Core for Edexcel（C1 C2）
Advanced Maths A2 Core for Edexcel（C3 C4）
Oxford Statistics 1
Oxford，Core C1，C2 and Core C3，C4
2．Week comprising 6 lessons
3．Lessons 40min each

Area of maths covered	$\begin{aligned} & \text { 응 } \\ & \text { 응 } \end{aligned}$	Chapter in book		Components of topic to be covered		Objectives
		PEARSON LONGMAN	OXFORD			
	Quadratic Equations \& Functions	C1:3	C1:3	- Solving quadratic equations by: - Factorizing - Quadratic formula - Completing the square - K Method Substitution - Sketching quadratic graphs Max/Min; Shape Turning Point (vertex) \& Axis of Symmetry - Nature of roots(working with the discriminate)	1.5	Completing the square. Solution of quadratic equations. Solution of quadratic equations by factorisation, using the formula and completing the square. Quadratic functions and their graphs Graphs of functions; sketching curves defined by simple equations. Geometrical interpretation of algebraic solution of equations. Use of intersection points of graphs of functions to solve equations. The discriminate of a quadratic function
		C1:4	C1 :4.2	- Solving inequalities - Linear - Quadratic	0.5	Solution of linear and quadratic inequalities. For example, $a x+b>c x+d, p x^{2}+q x+r>0$, $p x^{2}+q x+r<a x+b$
		C1:5	C1:4.1	- Solving simultaneous equations - Linear, - One linear \& one quadratic (algebraically \& graphically) - Intersection of linear \& quadratic functions (3 cases of discriminate)	1	Simultaneous equations: analytical solution by substitution. For example, where one equation is linear and one equation is quadratic. Graphs of functions; sketching curves. Geometrical interpretation of algebraic solution of equations. Use of intersection points of graphs of functions to solve equations.
		C2:18	C2:11	- Logarithms: - Definition.- $\log \leftrightarrow \exp$. - Rules: $\log _{c} a b ; \log _{c}(a \div b), \log _{c}\left(a^{n}\right)$ - Special cases; $\log _{a} a, \log _{a} 1$, $\log _{a}(1 \div a)$. - Exponential function: - Graphs. - Relationship between (log and exp).	2	Sketch $y=a^{x}$ and translations $y=a^{a x+b}+c$ Laws of logarithms - To include: $\log _{c} a b ; \log _{c} \frac{a}{b} ; \log _{c} a^{n}$ - Special cases $\log _{a} a ; \log _{a} 1 ; \log _{a}\left(\frac{1}{a}\right)$

		C1:6	C1:2	- Revision: - Coordinates, Midpoint, Gradient(value,+,-) - $y=m x+c$ (Drawing and writing the equations if two points are given) - The length of a line segment joining ($\mathrm{x}_{1}, \mathrm{y}_{1}$) to ($\mathrm{x}_{2}, \mathrm{y}_{2}$) - Straight line : - Gradient as $\tan \theta$. - Special cases for gradient (0,1 , $1, \infty)$ - Parallel and perpendicular lines $\left(m_{1}=m_{2}, m_{1} \cdot m_{2}=-1\right)$ - Equation of a line: $\mathrm{y}-\mathrm{y}_{1}=\mathrm{m}\left(\mathrm{x}-\mathrm{x}_{1}\right)$ or $\mathrm{y}-\mathrm{y}_{1}=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}\left(\mathrm{x}-\mathrm{x}_{1}\right)$ - Forms of equations of straight lines: - $y=m x+c, y=m x, y=x+c$ - $y=c, y=0, x=c, x=0$ - $a x+b y+c=0$ - Sketching - Applications: - Advanced use of the previous knowledge	3	Equation of a straight line, including the forms $y-y_{1}=m\left(x-x_{1}\right)$ and $a x+b y+c=0$. To include: - the equation of a line through two given points - the equation of a line parallel (or perpendicular) to a given line through a given point. For example, the line perpendicular to the line $3 x+4 y=18$ through the point $(2,3)$ has equation $y-3=\frac{4}{3}(x-2)$ Conditions for two straight lines to be parallel or perpendicular to each other. EX: ask for an equation for a line that is parallel to a line cuts a given equation for a curve in two points
		$\begin{gathered} \text { C2:17 } \\ \text { C2:16.1 } \end{gathered}$	$\begin{gathered} \text { C2:12.1- } \\ 12.4 \end{gathered}$	- Solutions of triangle (sin, cos, area rule) - Radians: - Definition. - Radians \leftrightarrow Degrees. - Angles and Quadrants ($0^{\circ} \geq \theta \geq$ 360°). - Area of sector and length of arc. ($A_{1}=0.5 r^{2} \theta, s=r \theta$) - Area of a triangle. ($\left.\mathrm{A}_{2}=0.5 \mathrm{absinC}\right)$ - Area of segment. $\left(A=A_{1}-A_{2}\right)$ - Special triangles	3	The sine and cosine rules, and the area of a triangle in the form $1 / 2 a b \sin C$. Radian measure, including use for arc length and area of sector. Use of the formulae $s=r \theta$ and $A=1 / 2 r^{2} \theta$

- Trigonometric functions for any angle:
- Sign.
- Magnitude.
- Special cases.
- Graphs of trigonometric functions:
- $y=\sin x, \cos x, \tan x$.
- Transformations of the graphs: $y= \pm a f(\pm x \pm A) \pm B$

Sine, cosine and tangent functions. Their graphs, symmetries and periodicity. Knowledge of graphs of curves with equations such as $y=3 \sin x, y=\sin \left(x+\frac{\pi}{6}\right)$, $y=\sin 2 x$ is expected

Grade 11
Semester 2

		C2:12	C2:9	- Identities - Long division - Revision the concepts ; (Quotient, Divisor, Dividend, and Remainder) - Dividing a polynomial by ($\mathrm{ax}+\mathrm{b}$). - Dividing a polynomial by ($a x^{2}+b x+c$). - A simpler method of division (ex. $\left.\frac{a x+b}{c x+d}=A+\frac{B}{C x+D}\right)$ - Remainder and Factor theorem - Factorising polynomials	1.5	Algebraic division; use of the Factor Theorem and the Remainder Theorem. Students should know that if $f(x)=0$ when $x=a$, then $(x-a)$ is a factor of $f(x)$. Students may be required to factorise cubic expressions such as $x^{3}+3 x^{2}-4$ and $6 x^{3}+11 x^{2}-x-6$. Students should be familiar with the terms 'quotient' and 'remainder' and be able to determine the remainder when the polynomial $f(x)$ is divided by $(a x+b)$. Should use a known factor to determine another factor.
		C1:8.1-8.2	$\begin{aligned} & \text { C1:6.1- } \\ & \text { 6.2; } 6.5 \end{aligned}$	- Definition of a sequence. - Terms: $1^{\text {st }}, 2^{\text {nd }}, 3^{\text {rd }}, 4^{\text {th }}, \ldots \ldots$ - Notations; $\mathrm{u}_{1}, \mathrm{u}_{2}, \mathrm{u}_{3}, \mathrm{u}_{4}, \ldots \ldots$ - Recurrence Relation: finding the nth term of a sequence (finding a pattern) - Series and Σ Notation. - Summations Results		Sequences, including those given by a formula for the nth term and those generated by a relation of the form $x_{n+1}=f\left(x_{n}\right)$ Understanding of notation will be expected.
		C1:8.3	$\begin{gathered} \text { C1:6.3- } \\ 6.4 \end{gathered}$	Arithmetic Series - Definition. - The concepts; common difference, progression. - Formula for the nth term arithmetic series. - Advanced applications. - Formula for the sum of n term(s) of arithmetic series. - Advanced applications.	3	Arithmetic series, including the formula for the term \& the sum of the first n natural numbers. The general term and the sum to n terms of the series are required. The proof of the term \& the sum to n terms formula should be known.

		C2:20	C2:13	Geometric Series - Definition. - The concepts; common ratio, progression. - Formula for the nth term in the arithmetic sequences. - Advanced applications. - Formula for the sum of n term(s) of arithmetic sequences. - Advanced applications.		The sum of a finite geometric series; the sum to infinity of a convergent geometric series, including the use of $\|r\|<1$. The general term and the sum to n terms are required. The proof of the sum formula should be known.
		C1:7	C1:5	- Sketching and interpreting the curves of standard functions: - $y=a, y=a x+b, y=a x^{2}+b x+c$ - $y=\frac{1}{x}, y=x^{3}$ - $\mathrm{y}=\sqrt{x}, \mathrm{y}=\sqrt[3]{x}, \mathrm{y}=\frac{1}{x^{2}}, y=\frac{1}{x^{n}}$, $y=\sqrt[n]{x}$ - Introducing the concepts ; Continuity, Discontinuity, Asymptote - Geometrical Interpretation of the solution of equations - Solving two equations graphically. - Points of intersection between an equation and a given line (intersection- being tangent-...etc) - Explaining if two points intersect or don't. - Other advanced applications.	2.5	Graphs of functions; sketching curves defined by simple equations. Geometrical interpretation of algebraic solution of equations. Use of intersection points of graphs of functions to solve equations. Functions to include simple cubic functions and the reciprocal function $y=\frac{k}{x}$ with $x \neq 0$ Knowledge of the term asymptote is expected.

		$\begin{gathered} \text { C2:16.6- } \\ 16.7 \end{gathered}$	$\begin{gathered} \text { C2:12.9 } \\ 12.10 \end{gathered}$	- Trigonometric Identities: - $\tan \theta=\sin \theta \div \cos \theta$. - $\sin ^{2} \theta+\cos ^{2} \theta=1$. - $\sin \theta=\cos \left(90^{\circ}-\theta\right), \cos \theta=\sin \left(90^{\circ}-\theta\right)$ - Solution of trigonometric equations: - Simple. (Ex; Asin $(a \theta \pm b)=B)$ - Quadratic. - Advanced equations (required the above knowledge)	2	Knowledge and use of $\tan \theta=\frac{\sin \theta}{\cos \theta}$ and $\sin ^{2} \theta+\cos ^{2} \theta=1$ Proving various identities Solution of simple trigonometric equations in a given interval. Students should be able to solve equations such as $\begin{aligned} & \sin \left(x+\frac{\pi}{2}\right)=\frac{3}{4} \text { for } 0<x<2 \pi \\ & \cos \left(x+30^{\circ}\right)=\frac{1}{2} \text { for }-180^{\circ}<x<180^{\circ} \\ & \tan 2 x=1 \text { for } 90^{\circ}<x<270^{\circ} \\ & 6 \cos ^{2} x+\sin x-5=0,0^{\circ} \leq x<360 \\ & \sin ^{2}\left(x+\frac{\pi}{6}\right)=\frac{1}{2} \text { for }-\pi \leq x<\pi \end{aligned}$
		C2:13	C2:10	- Properties of a circle - The equation of a circle - Tangents to a circle	2	Coordinate geometry of the circle using the equation of a circle in the form $(x-a)^{2}+(y-b)^{2}=r^{2}$ and including use of the following circle properties: - the angle in a semicircle is a right angle; - the perpendicular from the centre to a chord bisects the chord; - the perpendicularity of radius and tangent. Students should be able to find the radius and the coordinates of the centre of the circle given the equation of the circle, and vice versa. - Tangents from the same point outside of a circle are equal.

		C3:2	C3:1	- Even and Odd functions: - Definitions. - Determining of a given function is an odd or even function. - Relationship between the graphs of odd and even functions. - Modulus functions: - Definition of $\mid \mathrm{x}$. - Equations with modulus signs. - Inequalities with modulus signs. - Sketching functions involving modulus signs. - Comparison: $\|f(x)\|, f(\|x\|)$. - Transformation of graph of $f(x)$ to : $\begin{array}{ll} \circ & y=f(x) \pm a \\ 0 & y=f(x+a) \pm b \\ 0 & y=-f(x) \\ 0 & y=f(-x) \\ 0 & y=a f(x) \\ 0 & y=f(a x) \end{array}$ - Sketching a graph of a function using the previous transformations rules.	4	Definition of a function. $y=f(x), f(x)=x^{a}$ with a odd or even. The modulus function. $\|a x+b\|=\|c x+d\|$ and $\|a x+b\| \geq 3$ Combinations of the transformations $y=f(x)$ as represented by $y=a f(x), y=f(x)+a, y=f(x+a), y=f(a x)$. Students should be able to sketch the graph of, for example, $y=2 f(3 x), y=f(-x)+1$, given the graph of $y=f(x)$ or the graph of, for example, $y=3+\sin 2 x$, $y=-\cos \left(x+\frac{\pi}{4}\right)$ The graph of $y=f(a x+b)$ will not be required.
TOTAL NO. OF WEEKS					28	

Grade 12
2010/2011 Academic Year
Semester 1

Area of maths covered	믕	Chapter in book		Components of topic to be covered		Objectives
		PEARSON LONGMAN	OXFORD			
		C4:8	C4:6	- Distinct linear factors. - Repeated linear factors. - Improper fractions.	1.5	Rational functions. Partial fractions to include denominators such as $(a x+b)(c x+d)(e x+f)$ and $(a x+b)(c x+d)^{2}$ and $\left(a x^{2}+b\right)$
			S1:4	- Elementary probability - The terminology of probability - Sample space - Addition rule - Multiplication rule - Tree digrams - Independent and mutually exclusive events - Number of arrangements	1.5	Elementary probability. Sample space. Exclusive and complementary events. Conditional probability. Understanding and use of $P\left(A^{\prime}\right)=1-P(A) \text {, }$ $P(A \cup B)=P(A)+P(B)-P(A \cap B), P(A$ $\cap B)=P(A) P(B \mid A)$. Independence of two events. $P(B \mid A)=P(B)$, $P(A \mid B)=P(A), P(A \cap B)=P(A) P(B)$. Sum and product laws. Use of tree diagrams and Venn diagrams. Sampling with and without replacement
$$		C1:9	C1:7	- Rates of change - Tangent to a curve - Gradient of a curve - Differentiation - The notation - Function notation - Vocabulary - Differentiating from first principles - Differentiation of polynomials - Tangents and normals	2	The derivative of $f(x)$ as the gradient of the tangent to the graph of $y=f(x)$ at a point; the gradient of the tangent as a limit; interpretation as a rate of change; second order derivatives. For example, knowledge that $\frac{d y}{d x}$ is the rate of change of y with respect to x. Knowledge of the chain rule is required. The notation $f^{\prime}(x)$ may be used. Differentiation of x^{n}, and related sums and differences. For example, for $n \neq 1$, the ability to differentiate expressions such as $(2 x+5)(x-1)$ and $\frac{x^{2}+5 x-3}{3 x^{\frac{1}{2}}}$ is expected. Applications of differentiation to gradients, tangents and normals. Use of differentiation to Find equations of tangents and normals at specific points on a curve.

		C2:15	C2:14	- Increasing and decreasing functions - Stationary points - Identifying the type of a stationary point - Maximum and minimum problems	1.5	Applications of differentiation to maxima and minima and stationary points, increasing and decreasing functions. The notation $f^{\prime}(x)$ may be used for the second order derivative. To include applications to curve sketching. Maxima and minima problems may be set in the context of a practical problem.
		C3:3	C3:2	- Reciprocal Functions: - Definition. - Identities. - Graphs. - Comparing the six trigonometric functions. - Identities (involved all the six trigonometric functions). - Equations (involved all the six trigonometric functions). - Inverse trigonometric Functions: - Definition. - Graphs. - Simple equations. - Addition formulae: - $\sin (A \pm B), \cos (A \pm B), \tan (A \pm B)$. - Advanced applications of all of the previous formulae. - Double angle formulae: - $\sin 2 A, \cos 2 A, \tan 2 A$. - Advanced applications of all of the previous formulae. - Half-angle formulae: - $\operatorname{Sin} 0.5 \mathrm{~A}, \cos 0.5 \mathrm{~A}, \tan 0.5 \mathrm{~A}$. - Advanced applications of all of the previous formulae	3.5	Knowledge of secant, cosecant and cotangent and of arcsin, arccos and arctan. Their relationships to sine, cosine and tangent. Understanding of their graphs and appropriate restricted domains. Angles measured in both degrees and radians. Knowledge and use of $\sec ^{2} \theta=1+\tan ^{2} \theta$ and $\operatorname{cosec}^{2} \theta$ $=1+\cot ^{2} \theta$. Knowledge and use of double angle formulae; use of formulae for $\sin (A \pm B), \cos (A \pm B)$ and $\tan (A \pm B)$ and of expressions for $a \cos \theta+b \sin$ θ in the equivalent forms of $r \cos (\theta \pm a)$ or $r \sin (\theta$ $\pm a$). To include application to half angles. Knowledge of the $(\tan 1 / 2 \theta)$ formulae will not be required. Students should be able to solve equations such as a $\cos \theta+$ $b \sin \theta=c$ in a given interval, and to prove simple identities such as $\cos x \cos 2 x+\sin x \sin 2 x \equiv \cos x$.
		C1:10	C1:8	- The reverse of differentiation - Finding the constant C - Using the integral sign - Rules for integrating x^{n} - Integration of a polynomial - Applying integration	1.5	Indefinite integration as the reverse of differentiation. Students should know that a constant of integration is required. Integration of x^{n} For example, the ability to integrate expressions such as $1 / 2 x^{2}-3 x^{-1 / 2}$ and $(x+2)^{2}$ is expected $x^{1 / 2}$ Given $f^{\prime}(x)$ and a point on the curve, students should be able to find an equation of the curve in the form $y=f(x)$.

Grade 12
Semester 2

$\begin{aligned} & \mathscr{0} \\ & \frac{0}{6} \\ & \frac{1}{6} \\ & 6 \end{aligned}$?	S1:8	- The normal distribution - The standard normal distribution - Area under the curve of the normal distribution curve	2	The Normal distribution including the mean, variance and use of tables of the cumulative distribution Knowledge of the shape and the symmetry of the distribution is required. Knowledge of the probability density function is not required. Derivation of the mean, variance and cumulative distribution function is not required. Interpolation is not necessary. Questions may involve the solution of simultaneous equations
		C4:9	C4:8	Binomial Expansion - For any rational index. - Approximations.	2	Binomial series for any rational index n .
		C3:5	C3:4	- The chain rule - Differentiation of powers of $\mathrm{f}(\mathrm{x})$ - The use of - Differentiation of the exponential function and natural logarithms - Differentiation of functions of the type $e^{f(x)}$ - Differentiation of $\ln x$ - Differentiation of $\ln k x$ - Differentiation of $\ln (f(x))$ - Simplifying a logarithmic function before differentiating - Differentiation of products and quotients - The product rule - The quotient rule - Differentiation of trigonometric functions - Differentiation of $\sin x$ and $\cos x$ - The derivatives of $\sin f(x)$ and $\cos f(x)$ - Angle x in degrees - The derivatives of powers of $\sin x$ and $\cos \mathrm{X}$ - Trigonometric differentiation involving the product and quotient rules - Differentiation of $\tan x, \cot x, \sec x$ and $\operatorname{cosec} \mathrm{x}$	3	Differentiation of $\mathrm{e}^{x}, \ln x, \sin x, \cos x, \tan x$ and their sums and differences. Differentiation using the product rule, the quotient rule and the chain rule. Differentiation of $\operatorname{cosec} x, \cot x$ and $\sec x$ are required. Skill will be expected in the differentiation of functions generated from standard forms using products, quotients and composition, such as $2 x \operatorname{Sin} 4 x, \frac{e^{3 x}}{x}$ and $\tan 2 x$. The use of $\frac{d y}{d x}=\frac{1}{\left(\frac{d x}{d y}\right)}$ Eg finding $\frac{d y}{d x}$ for $x=\sin 3 y$

M. Hawthorn
A. Stevens
M. Katira

Moos Hadi

Ahmed AI Thuhli

Sign:
 Date: \qquad $10106 / 09$

Sign: \qquad Date: 10106109

Sign: \qquad Date:

Sign:
 Date: 10-06-09

Sign: Date: $10106 / 09$
\qquad

